The laboratory work 5
Update the app with Visual Studio
1. Launch Visual Studio and open the Notes solution.
2. In Solution Explorer, select the Notes project, right-click and select Manage NuGet Packages...:
[image: ]
3. In the NuGet Package Manager, select the Browse tab, search for the sqlite-net-pcl NuGet package, select it, and click the Install button to add it to the project:
[image: ]


4. In Solution Explorer, in the Notes project, open Note.cs in the Models folder and replace the existing code with the following code:
	using System;
using SQLite;

namespace Notes.Models
{
    public class Note
    {
        [PrimaryKey, AutoIncrement]
        public int ID {get; set;}
        public string Text {get; set;}
        public DateTime Date {get; set;}
    }
}


This class defines a Note model that will store data about each note in the application. The ID property is marked with PrimaryKey and AutoIncrement attributes to ensure that each Note instance in the SQLite.NET database will have a unique id provided by SQLite.NET.
Save the changes to Note.cs by pressing CTRL+S, and close the file.
5. In Solution Explorer, add a new folder named Data to the Notes project.
6. In Solution Explorer, in the Notes project, add a new class named NoteDatabase to the Data folder.
7. In NoteDatabase.cs, replace the existing code with the following code:
	using System.Collections.Generic;
using System.Threading.Tasks;
using SQLite;
using Notes.Models;
namespace Notes.Data
{
    public class NoteDatabase
    {
        readonly SQLiteAsyncConnection _database;
        public NoteDatabase(string dbPath)
        {
            _database = new SQLiteAsyncConnection(dbPath);
            _database.CreateTableAsync<Note>().Wait();
        }

        public Task<List<Note>> GetNotesAsync()
        {
            return _database.Table<Note>().ToListAsync();
        }

        public Task<Note> GetNoteAsync(int id)
        {
            return _database.Table<Note>()
                            .Where(i => i.ID == id)
                            .FirstOrDefaultAsync();
        }
        public Task<int> SaveNoteAsync(Note note)
        {
            if (note.ID != 0)
            {
                return _database.UpdateAsync(note);
            }
            else
            {
                return _database.InsertAsync(note);
            }
        }

        public Task<int> DeleteNoteAsync(Note note)
        {
            return _database.DeleteAsync(note);
        }
    }
}


This class contains code to create the database, read data from it, write data to it, and delete data from it. The code uses asynchronous SQLite.NET APIs that move database operations to background threads. In addition, the NoteDatabase constructor takes the path of the database file as an argument. This path will be provided by the App class in the next step.
Save the changes to NoteDatabase.cs by pressing CTRL+S, and close the file.
8. In Solution Explorer, in the Notes project, double-click App.xaml.cs to open it. Then replace the existing code with the following code:
	using System;
using System.IO;
using Xamarin.Forms;
using Notes.Data;

namespace Notes
{
    public partial class App: Application
    {
        static NoteDatabase database;

        public static NoteDatabase Database
        {
            get
            {
                if (database == null)
                {
                    database = new NoteDatabase(Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData), "Notes.db3"));
                }
                return database;
            }
        }

        public App()
        {
            InitializeComponent();
            MainPage = new NavigationPage(new NotesPage());
        }

        protected override void OnStart()
        {
            // Handle when your app starts
        }

        protected override void OnSleep()
        {
            // Handle when your app sleeps
        }

        protected override void OnResume()
        {
            // Handle when your app resumes
        }
    }
}


This code defines a Database property that creates a new NoteDatabase instance as a singleton, passing in the filename of the database as the argument to the NoteDatabase constructor. The advantage of exposing the database as a singleton is that a single database connection is created that's kept open while the application runs, therefore avoiding the expense of opening and closing the database file each time a database operation is performed.
Save the changes to App.xaml.cs by pressing CTRL+S, and close the file.
9. In Solution Explorer, in the Notes project, double-click NotesPage.xaml.cs to open it. Then replace the OnAppearing method with the following code:
	protected override async void OnAppearing()
{
    base.OnAppearing();

    listView.ItemsSource = await App.Database.GetNotesAsync();
}


10. In Solution Explorer, double-click NoteEntryPage.xaml.cs to open it. Then replace the OnSaveButtonClicked and OnDeleteButtonClicked methods with the following code:
	async void OnSaveButtonClicked(object sender, EventArgs e)
{
    var note = (Note)BindingContext;
    note.Date = DateTime.UtcNow;
    await App.Database.SaveNoteAsync(note);
    await Navigation.PopAsync();
}

async void OnDeleteButtonClicked(object sender, EventArgs e)
{
    var note = (Note)BindingContext;
    await App.Database.DeleteNoteAsync(note);
    await Navigation.PopAsync();
}


The NoteEntryPage stores a Note instance, which represents a single note, in the BindingContext of the page. When the OnSaveButtonClicked event handler is executed, the Note instance is saved to the database and the application navigates back to the previous page. When the OnDeleteButtonClicked event handler is executed, the Note instance is deleted from the database and the application navigates back to the previous page.
Save the changes to NoteEntryPage.xaml.cs by pressing CTRL+S, and close the file.
11. [bookmark: _GoBack]Build and run the project on each platform. For more information, see Building the quickstart.
On the NotesPage press the + button to navigate to the NoteEntryPage and enter a note. After saving the note the application will navigate back to the NotesPage.
Enter a number of notes, of varying length, to observe the application behavior.


image1.png
Si-|o-5 0B SR

Search Solution Explorer (Ctl+:)

53] Solution Notes' @ pro

Build
Rebuild

Clean

Analyze. B
Pack

Publish.

L

Scopeto This
New Solution Explorer View
Show on Code Map

Vs

EditNotescsproj
Build Dependencies ,
Add ,
& Manage NuGet Packages...




image2.png
Browse

salite-net pel

Installed  Updates

%~ & [ include prerelease

SQite.Net-PCL-Silverlight by oystein krog, Frank Krueger, Tim Heuer, 7.74K downloads 253

A NET dlient library to access SQLite embedded database files in a LINQ manner

sqlite-net-pcl by Frank A Kiueger, 1.24M downloads

te-net Offcil Portable Library i th sqlite from NET api

SQite.Net-PCL by 0ystein krog Frank Krueger Tim Hever, 703K downloads s
ANET dlent ibrary to access SQlite embedded database filesin 3 LINQ manner.

sqlite-net-pl-ecp by Frank A Kueger, Eduardo Carisi, 342K dovwloads v33
SQlite net Portabl Library i the easy way to access sate from NET apps.

SQLite-Net.Extensions.Readers by MACK Mathieu, 5.54K downloads V2017.530.810.15

This package contains an extension for sqlite-net that let you query database with a reader.

NuGet Package Manager: Notes

Package source: |nugetorg | £

© sqlite-net-pcl

Install

Version: |Latest stable 1.5231 -

(+) options

Description
SQLite-net is an open source and light weight library providing
easy SQlite database storage for .NET, Mono, and Xamarin
applications. This version uses SQLitePCLRaw to provide platform
independent versions of SQlLite.

Version: 15231
Author(s):  Frank A Krueger
License: View License

Date published: Monday, September 10, 2018 (9/10/2018)





